Comparative Genomics Yields Insights into Niche Adaptation of Plant Vascular Wilt Pathogens

نویسندگان

  • Steven J. Klosterman
  • Krishna V. Subbarao
  • Seogchan Kang
  • Paola Veronese
  • Scott E. Gold
  • Bart P. H. J. Thomma
  • Zehua Chen
  • Bernard Henrissat
  • Yong-Hwan Lee
  • Jongsun Park
  • Maria D. Garcia-Pedrajas
  • Dez J. Barbara
  • Amy Anchieta
  • Ronnie de Jonge
  • Parthasarathy Santhanam
  • Karunakaran Maruthachalam
  • Zahi Atallah
  • Stefan G. Amyotte
  • Zahi Paz
  • Patrik Inderbitzin
  • Ryan J. Hayes
  • David I. Heiman
  • Sarah Young
  • Qiandong Zeng
  • Reinhard Engels
  • James Galagan
  • Christina A. Cuomo
  • Katherine F. Dobinson
  • Li-Jun Ma
چکیده

The vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species, causing billions of dollars in annual crop losses. The characteristic wilt symptoms are a result of colonization and proliferation of the pathogens in the xylem vessels, which undergo fluctuations in osmolarity. To gain insights into the mechanisms that confer the organisms' pathogenicity and enable them to proliferate in the unique ecological niche of the plant vascular system, we sequenced the genomes of V. dahliae and V. albo-atrum and compared them to each other, and to the genome of Fusarium oxysporum, another fungal wilt pathogen. Our analyses identified a set of proteins that are shared among all three wilt pathogens, and present in few other fungal species. One of these is a homolog of a bacterial glucosyltransferase that synthesizes virulence-related osmoregulated periplasmic glucans in bacteria. Pathogenicity tests of the corresponding V. dahliae glucosyltransferase gene deletion mutants indicate that the gene is required for full virulence in the Australian tobacco species Nicotiana benthamiana. Compared to other fungi, the two sequenced Verticillium genomes encode more pectin-degrading enzymes and other carbohydrate-active enzymes, suggesting an extraordinary capacity to degrade plant pectin barricades. The high level of synteny between the two Verticillium assemblies highlighted four flexible genomic islands in V. dahliae that are enriched for transposable elements, and contain duplicated genes and genes that are important in signaling/transcriptional regulation and iron/lipid metabolism. Coupled with an enhanced capacity to degrade plant materials, these genomic islands may contribute to the expanded genetic diversity and virulence of V. dahliae, the primary causal agent of Verticillium wilts. Significantly, our study reveals insights into the genetic mechanisms of niche adaptation of fungal wilt pathogens, advances our understanding of the evolution and development of their pathogenesis, and sheds light on potential avenues for the development of novel disease management strategies to combat destructive wilt diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida

Pseudomonas putida is a gram-negative rod-shaped gammaproteobacterium that is found throughout various environments. Members of the species P. putida show a diverse spectrum of metabolic activities, which is indicative of their adaptation to various niches, which includes the ability to live in soils and sediments contaminated with high concentrations of heavy metals and organic contaminants. P...

متن کامل

The xylem as battleground for plant hosts and vascular wilt pathogens

Vascular wilts are among the most destructive plant diseases that occur in annual crops as well as in woody perennials. These diseases are generally caused by soil-borne bacteria, fungi, and oomycetes that infect through the roots and enter the water-conducting xylem vessels where they proliferate and obstruct the transportation of water and minerals. As a consequence, leaves wilt and die, whic...

متن کامل

Combining effects of soil solarization and grafting on plant yield and soil-borne pathogens in cucumber

Combining effects of soil solarization and grafting on soilborne pathogens, plant height and yield in cucumber were compared in a greenhouse of Bati Akdeniz Agricultural Research Institute located in Antalya in 2008 fall season. The experiment was set in split plot design containing; 1, 2, 4 and 5 months soil solarization (MSS), and non-solarized control plots (NSC) on which grafted Maximus F1+...

متن کامل

A Population Genomics Perspective on the Emergence and Adaptation of New Plant Pathogens in Agro-Ecosystems

Plants and pathogens evolve in response to each other. This coevolutionary arms race is fueled by genetic variation underlying the recognition of pathogen proteins by the host and the defeat of host defenses by the pathogen. Together with new mutations, genetic diversity in populations of both the host and pathogen represent a pool of possible variants to maintain adaptation via natural selecti...

متن کامل

Specific and Sensitive Primers Developed by Comparative Genomics to Detect Bacterial Pathogens in Grains

Accurate and rapid detection of bacterial plant pathogen is the first step toward disease management and prevention of pathogen spread. Bacterial plant pathogens Clavibacter michiganensis subsp. nebraskensis (Cmn), Pantoea stewartii subsp. stewartii (Pss), and Rathayibacter tritici (Rt) cause Goss's bacterial wilt and blight of maize, Stewart's wilt of maize and spike blight of wheat and barley...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2011